Voting
Welcome!
Juno is in a 53-day orbit. When it passes close to Jupiter (“PeriJove”
or “PJ”) we will take as many pictures as we can. The number of pictures that we take is
limited by the amount of onboard data storage that we have for JunoCam, so we
have to be selective. The images are
collected as we go from the north pole of Jupiter to the south pole, which
happens in a brief 2 hour portion of the orbit.
On any given perijove pass we will only be able to image targets in a
narrow swath of territory the spacecraft flies over (“groundtrack”).
Juno’s orbit geometry is evolving so we will carry out campaigns rather than voting on specific targets. Campaigns are focused on a specific science theme and take advantage of the changes in lighting.
Juno’s orbit geometry is evolving so we will carry out campaigns rather than voting on specific targets. Campaigns are focused on a specific science theme and take advantage of the changes in lighting.
What happened to Voting?
Up through PJ8 everyone could vote on their favorite Point
of Interest (POI) and those rounds can be viewed here. Changes in the orbit and mission plan mean
that we are no longer selecting targets by vote.
There will still be a voting page for every orbit and we will describe the specifics of each perijove pass such as the spacecraft orientation. Because of the challenges to predict the Points of Interest that will be in the JunoCam field of view we are now timing the image collection by latitude and/or executing campaigns.
There will still be a voting page for every orbit and we will describe the specifics of each perijove pass such as the spacecraft orientation. Because of the challenges to predict the Points of Interest that will be in the JunoCam field of view we are now timing the image collection by latitude and/or executing campaigns.
Target Selection
We will take polar images on every PJ pass to assemble
timelapse sequences to study the dynamics of the circumpolar cyclones. Between the north and south pole images will
be timed to get complete latitudinal coverage.
The rest of the resources will be used for campaigns. Options are to look for lightning, take multiple methane images to study high altitude hazes, study Jupiter’s ring, take stereo pairs for cloud altitudes, image Galilean moons when available, etc. We will keep the Voting Round discussion for comments on what would be best. We are hoping that you enjoy being a part of this process, that you enjoy being a member of the JunoCam team.
The rest of the resources will be used for campaigns. Options are to look for lightning, take multiple methane images to study high altitude hazes, study Jupiter’s ring, take stereo pairs for cloud altitudes, image Galilean moons when available, etc. We will keep the Voting Round discussion for comments on what would be best. We are hoping that you enjoy being a part of this process, that you enjoy being a member of the JunoCam team.
Voting Round :
PJ22 Encounter
CLOSED : 2019-09-11 10:00:00
Perijove on : 2019-09-11 20:14 UT
The orbit petal continues to evolve toward midnight at apojove so Juno approaches Jupiter from the night side in the north. Fully illuminated images are acquired pole-to-pole but images close to perijove capture just a sliver of the crescent. North polar images are higher resolution on each pass. The evolution of the orbit also causes southward motion of apojove, which means that as the spacecraft recedes from perijove the south pole is in view for a long time, but at lower resolution every pass. Io's shadow crosses Jupiter and we are right over it!
The image sequence begins and ends with lightning search images inbound and outbound on the dark side. Images in the northern hemisphere are taken close together in time as the geometry changes rapidly. In the southern hemisphere the geometry changes slowly and images are collected at a leisurely pace.
Round Discussion
General discussion about this round.
Comments
Be the first to comment!